Ex_004 3D Open Hole Wellbore Stability Model

In this example a 3D coupled open-hole (no casing) wellbore model will be modelled. This type of model can be used to analyse wellbore stability during drilling and calculate admissible mud pressures. The model geometry considers a quarter symmetry (normal displacements constrained in the symmetry boundaries).  The dimensions are indicated in the figure below. The domain is discretized into 4200 hexahedral elements.

 

Ex_004_01

View of the wellbore model geometry

 

 

The simulation comprises two stages:

 

1.Initialization in a single step:

a.Application of an initial geostatic stress of σx' = σy' = 1·107 Pa and σz' = 2 · 107 Pa and an initial pore pressure of p=1.5·107 Pa.

b.Apply a pore pressure to the exterior side boundaries and in the inner wellbore surface of p=1.5·107 Pa.

c.Fix the X and Y displacements in the inner wellbore wall

d.Fix the displacements in the perpendicular direction for symmetry boundary surfaces

e.Fix vertical displacements for base surface and apply a stress boundary condition of σz' = 3.5 · 107 Pa

f.Apply stress boundary conditions of σx = σy = 2.5·107 Pa to external boundaries perpendicular to X and Y axes respectively

 

Ex_004_02

 

Schematic of boundary conditions during initialization phase

 

 

 

2.Drilling phase:

a.Fixity in the inner wellbore wall is removed. The stress on the wellbore wall calculated on the previous stage is gradually ramped down to zero by using the Constraint_relaxation data structure.

b.Mud load is applied to the wellbore wall by:

i.Increase of the inner pore pressure from p=1.5·107 Pa to p=2.0·107 Pa.

ii.Apply a the mud surface stress load of σmud=2.0·107 Pa.

iii.Note that both loads correspond to the flow field and mechanical field load of the applied mud respectively.

 

 

Ex_004_03

 

Schematic of boundary conditions during drilling phase

 

 

 

The formation material is considered poro-elasto-plastic the properties of which are summarized in the table below. Note that the material is defined using the same properties as Mat_001_Case3 tutorial example.

 

 

Formation

Grain Stiffness, Kg

30 GPa

Grain density, ρg

2710 Kg/m3

Porosity

0.35

Young's Modulus, E

Stress dependent

Poisson's Ratio, υ

0.25

Reference Bulk Modulus (K0)

6·108 Pa

Unloading modulus, κ

0.01

Reference pt

0.8·106 Pa

Reference pc

-53·106 Pa

Friction parameter

63.0º

Dilation parameter

66.0º

Beta0 (deviatoric plane)

0.6

Beta1 (deviatoric plane)

1.0

Alpha (deviatoric plane)

0.25

Exponent n (Yield)

2.2

Exponent m (Flow potential)

1.2

Hardening parameter, λ

0.09

Permeability, k

2.0·10-17 m2

Biot Constant, α

1.0

 

 

Water properties are summarized in the following table:

 

 

Water

Stiffness, Kw

2 GPa

Density, ρw

1040 kg/m3

Viscosity, μw

1.157·10-8 Pa· day

 

 

This example aims to be a reference for:

Coupled wellbore model benchmark

Usage of Constraint_relaxation

 

 

The data files for the examples is found in: ParaGeo Examples\General Examples\Ex_004\Data

 

Key data for initialization stage

 

Geostatic_data

Data File

 

 

* Geostatic_data            NUM=1

! ---------------------------------

 Name       "InitialStress"

 Groups  IDM=1

  "Formation"

 Initial_stress  IDM=3

   -1e7  -1e7  -2e7

 Pore_pressure_distribution     "Constant"

 Pore_pressure                       1.5e7  

 

 

 

1.In first stage Geostatic_data is specified. This data is used to define the initial stress state and the initial pore pressure for group "Formation"

 

 

 

Support_data

Data File

 

 

* Support_data                          

! ---------------------------------

 Displacement_codes       IDM=3  JDM=4  

  /Set 1/ 1 0 0

  /Set 2/ 0 1 0

  /Set 3/ 0 0 1

  /Set 4/ 1 1 0

 Displacement_code_geom_set       IDM=4

 "Symmetry_X"

 "Symmetry_Y"

 "Base"

 "Wellbore_wall"                        

 Displacement_code_geom_ass       IDM=4

   1  2  3  4

 Pore_pressure_codes      IDM=1    JDM=2

  /Set1/  1 ! Prescribed

  /Set2/ 0 ! Free

 Pore_pressure_code_geom_set  IDM=3

 "Ext_X"

 "Ext_Y"

 "Wellbore_wall"                

 Pore_pressure_code_geom_ass  IDM=3        

  1  1  1  

 

1.Displacements in their respective normal directions are constrained for symmetry boundaries and model base.

2.Displacements in X and Y directions are constrained for the wellbore wall

3.Pore pressure is prescribed in the exterior boundaries and in the wellbore wall

 

 

 

Loading data

Data File

 

 

* Global_loads  NUM=1                          

! ---------------------------------

 Name  "Stress_XYSides"          

 Surface_load  IDM=3  JDM=1

  /Set1/  1   0   0

 Surface_load_geom_set  IDM=2  

 "Ext_X"

 "Ext_Y"

 Surface_load_geom_ass  IDM=2

   1 1

 

* Time_curve_data  NUM=1

! --------------------------------------

 Name                "Stress_XYSides"  

 Curve_type  1  

 Time_curve  IDM=2

   0.0    1

 Load_factor  IDM=2

   2.5e7   2.5e7        

 

 

 

* Global_loads  NUM=2                          

! ---------------------------------

 Name  "Stress_ZSides"          

 Surface_load  IDM=3  JDM=1

  /Set1/  1   0   0

 Surface_load_geom_set  IDM=1  

  "Top"

 Surface_load_geom_ass  IDM=1

   1  

 

* Time_curve_data  NUM=2

! --------------------------------------

 Name                 "Stress_ZSides"  

 Curve_type  1  

 Time_curve  IDM=2

   0.0    1

 Load_factor  IDM=2  

   3.5e7  3.5e7

 

 

 

* Global_loads  NUM=3                          

! ---------------------------------

 Name  "Pp_wellbore"          

 Prescribed_pore_pressure  IDM=1  JDM=1

  /Set1/  1  

 Pres_pore_pressure_geom_set  IDM=1  

 "Wellbore_wall"                

 Pres_pore_pressure_geom_ass  IDM=1

   1  

 

* Time_curve_data  NUM=3

! --------------------------------------

 Name                  "Pp_wellbore"  

 Curve_type  1  

 Time_curve  IDM=2

   0.0    1

 Load_factor  IDM=2  

   1.5e7  1.5e7        

 

 

 

* Global_loads  NUM=4                          

! ---------------------------------

 Name  "Pp_Boundaries"          

 Prescribed_pore_pressure  IDM=1  JDM=1

  /Set1/  1  

 Pres_pore_pressure_geom_set  IDM=2  

 "Ext_X"

 "Ext_Y"

 Pres_pore_pressure_geom_ass  IDM=2

   1  1

 

* Time_curve_data  NUM=4

! --------------------------------------

 Name                 "Pp_Boundaries"  

 Curve_type  1  

 Time_curve  IDM=2

   0.0    1

 Load_factor  IDM=2  

   1.5e7  1.5e7        

 

 

1.Stress boundary conditions are applied to the top and external side boundaries. Note that loads are specified in local element coordinates so that positive values indicate stress pointing towards inside the element whereas negative values indicate stress pointing outwards. Note also that as the loads are in total stress the values are calculated as the initial stress + the initial pore pressure (for example prescribed σx in the external boundary perpendicular to X axis is calculated as σx= 1.0·107 + 1.5·107 = 2.5·107 Pa).

2.Pore pressure equal to the initial value is prescribed to the external boundaries and on the wellbore wall.

 

 

 

Couple freedoms

Data File

 

 

* Couple_freedoms  NUM=1

! ------------------------------

 Geomechanical_codes IDM=3

   1 0 0

 Geometry_sets  IDM=1

   "Ext_X"

 

* Couple_freedoms  NUM=2

! ------------------------------

 Geomechanical_codes IDM=3

   0 1 0

 Geometry_sets  IDM=1

   "Ext_Y"

 

* Couple_freedoms  NUM=3

! ------------------------------

 Geomechanical_codes IDM=3

   0 0 1

 Geometry_sets  IDM=1

   "Top"

 

 

1.Couple freedoms data is defined for the Top and external boundaries to make sure all nodes have consistent displacements in the direction normal to the respective surfaces.

 

 

 

 

Key data for drilling stage

 

Support_data

Data File

 

 

* Support_data                          

! ---------------------------------

 Displacement_codes       IDM=3  JDM=4  

  /Set 1/ 1 0 0

  /Set 2/ 0 1 0

  /Set 3/ 0 0 1

  /Set 4/ 1 1 0

 Displacement_code_geom_set       IDM=3

 "Symmetry_X"

 "Symmetry_Y"

 "Base"                        

 Displacement_code_geom_ass       IDM=3

   1  2  3  

 Pore_pressure_codes      IDM=1    JDM=2

  /Set1/  1 ! Prescribed

  /Set2/ 0 ! Free

 Pore_pressure_code_geom_set  IDM=3

 "Ext_X"

 "Ext_Y"

 "Wellbore_wall"                

 Pore_pressure_code_geom_ass  IDM=3        

  1  1  1  

 

1.Support_data is overwritten and the only difference compared to stage 1 is that displacements in the wellbore wall are no longer constrained.

 

 

 

Constraint_relaxation

Data File

 

 

* Constraint_relaxation

! --------------------------------------

 Displacement_geom_set IDM=1

   "Wellbore_wall"  

 

 

1.The Constraint_relaxation data structure is applied to the wellbore wall. Thus the stress calculated during the previous stage due to the reaction of the fixity conditions is initially applied and gradually ramped down over the stage.

 

 

 

Loading data

Data File

 

 

* Time_curve_data  NUM=3

! --------------------------------------

 Name                 "Pp_wellbore"  

 Curve_type  1  

 Time_curve    IDM=2

   0.01    1.01

 Load_factor   IDM=2  

   1.5e7  2.0e7        

 

 

 

* Global_loads  NUM=5                          

! ---------------------------------

  Name      "Mud_Stress"      

  Surface_load  IDM=3  JDM=1

  /Set1/  1   0   0

  Surface_load_geom_set  IDM=1  

   "Wellbore_wall"  

  Surface_load_geom_ass  IDM=1

   1  1

 

* Time_curve_data           NUM=5

! --------------------------------------

  Name             "Mud_Pressure"  

  Curve_type  2  

  Time_curve    IDM=2

   0.01  1.01

  Load_factor   IDM=2    

   0   2.0e7                

   

 

1.Time_curve NUM=3 is overwritten so that Pore pressure in the wellbore wall increases from 1.5·107 Pa to 2.0·107 Pa due to the application of the drilling mud pressure.

2.Global_loads NUM=5 corresponds to the mechanical load of the drilling mud. As a such it has to have a consistent value with the mud pore pressure.

 

 

 

 

 

Results

The result files for the project are in directory: ParaGeo Examples\General Examples\Ex_004\Results.

 

The results show stress concentrations in X and Y directions near the wellbore wall with the maximum magnitudes being tangential to the wellbore wall and minimum magnitudes being perpendicular. Stress in Z direction has its minimal value near the wellbore wall due to the maximum value in pore pressure. It can be seen that the minimum effective mean stress and the maximum deviatoric stress is found near the wellbore wall and hence is the zone more prone to failure. The well has closed a bit due to elastic displacements with a reduction in its radius of c.a. 1/10 of mm.

 

Ex_004_Case1_02

Stresses, Pore pressure and displacements distributions in the wellbore model