Val_005a Kerogen to Oil and Gas Generation

Problem Description

 

The kerogen to oil and gas generation process is described here as highlighted in Figure 1.  For each of the kerogen organofacies types A - F, seven different gas concentration ratios (G) are simulated- these include G = 0, 0.2, 0.4, 0.6, 0.8, 1.0 and the default G (see Table 1). A summary of the simulation matrix is shown in Table 4. The ParaGeo model (thermal field) results are validated against the results presented by Pepper and Corvi (1995a) - [Figure 15] for organofacies A, B, C, D/E and F.

 

 

Val_005a_001

 

 

 

Figure 1: Scheme of petroleum generation, cracking, expulsion, porosity change and pore pressure generation. Highlighted process is the Kerogen to Oil and Gas generation.

 

 

 

 

The default parameters in the kerogen kinetics for the five kerogen organofacies types A, B, C, D/E and F are listed in Table 1 below.  These values are input in the simulation data files for each of the different organofacies A - F and substituted with the relevant gas concentration ratio G.  The simulation uses other default kerogen kinetics parameters defined in the ParaGeo code for kerogen -> oil generation and kerogen -> gas generation - these default parameters are described in the reference manual Hydrocarbon maturation.

 

Organofacies

Transformation index (ratio), TR

Hydrocarbon index, HI

Gas concentration ratio, G

Weight fraction carbon, W

A

0.033

0.617

0.17

0.80

B

0.018

0.592

0.17

0.75

C

0.020

0.600

0.13

0.68

D/E

0.007

0.333

0.23

0.68

F

0.002

0.158

0.44

0.75

Table 1: Kerogen kinetics (default parameters in Kerogen_kinetics)

 

 

 

The default hydrocarbon density parameter in the hydrocarbon kinetics data for the five kerogen organofacies types A, B, C, D/E and F are shown in Table 2 below.  These values are substituted in the simulation data files for each of the different organofacies A - F.

 

Organofacies

Hydrocarbon density (kg/m3)

A

898

B

865

C

876

D/E

860

F

835

Table 2: Hydrocarbon density (default parameters in Hydrocarbon_kinetics)

 

 

 

A total of 35 thermal field simulations are performed for the five different organofacies with seven different gas concentration ratios as shown in the simulation matrix in Table 3 below.

 

Organofacies

Gas concentration ratio, G

default G

0

0.2

0.4

0.6

0.8

1.0

A

0.17

ü

ü

ü

ü

ü

ü

B

0.17

ü

ü

ü

ü

ü

ü

C

0.13

ü

ü

ü

ü

ü

ü

D/E

0.23

ü

ü

ü

ü

ü

ü

F

0.44

ü

ü

ü

ü

ü

ü

Table 3: Simulation Matrix

 

 

 

 

Data File Description

 

The data files for the kerogen -> oil/gas generation for different gas concentration ratios are in ParaGeo Examples\Validation\Val_005\Val_005a. These are placed in different sub-folders for the different kerogen organofacies types.

 

The basic data includes:

1Geometry data (Nodal_data, Geometry_line and Geometry_surface) for definitions of the 2D geometry.

2Group_control_data activates the thermal field for the current simulation group.

3Group_data defines the group name, element type number, material number, kerogen property name, porous flow type and the associated surface entity.

4Hydrocarbon_kinetics defines the assignment and processing data associated with hydrocarbon kinetics, e.g. vitrinite maturation model, oil -> gas cracking model, hydrocarbon density model and density.

5Kerogen_kinetics defines the assignment and processing data associated with kerogen kinetics, e.g. kerogen organofacies type, total organic carbon content (TOC), transformation index (TI), hydrocarbon index (HI), gas concentration ratio (G), weight fraction carbon (W), etc.

6Material_data defines the thermal field material properties of the model.

7Fluid_properties defines the fluid properties of the model.

8Support_data constrains the temperatures on the surface entity.

9Global_loads defines the prescribed temperatures on the surface entity with loading rate defined via the Time_curve_data data structure. Load_case_control_data defines the surface load as active.

10History_point outputs element porosity, temperature and pore pressure and state variables for the hydrocarbon kinetics every 1.0 time unit.

11Mesh_control_data and Structured_mesh_data are used to generate a single structured element mesh for the surface entity.

12Thermal_control_data defines the solution algorithm (3 - linear transient) for solving the thermal field, termination time = 90, etc.

 

 

Hydrocarbon_kinetics

 

Hydrocarbon_kinetics defines the assignment and processing data associated with hydrocarbon kinetics, e.g. vitrinite maturation, oil -> gas cracking, hydrocarbon expulsion, hydrocarbon density for porosity update and pore pressure generation.

 

Data File

 

 

* Hydrocarbon_kinetics               NUM=0

! ---------------------------------

 Maturation_model     'EasyRo'

 Oil_gas_cracking_model      None

 Hydrocarbon_density_model    "Constant"

 Hydrocarbon_density_properties  IDM=1

    898

 

1Maturation_model "EasyRo" is defined.

2Oil -> gas cracking model is defined as "None".

3The Hydrocarbon_density_model for the evaluation of the density of the expelled hydrocarbon is defined as "Constant".

4Hydrocarbon_density_properties define the density of the expelled hydrocarbon.  This density is a combination of oil and liquid gas and varies for the different organofacies A-F (Table 3).

 

 

 

Kerogen_kinetics

 

Kerogen_kinetics defines the assignment and processing data associated with kerogen kinetics property name "kerogen1", e.g. kerogen organofacies type, total organic carbon content (TOC), transformation index (TI), hydrocarbon index (HI), gas concentration ratio (G), weight fraction carbon (W), Universal gas constant and kerogen density.  Depending on the organofacies type defined in Kerogen_facies_type, the kerogen kinetics data shown in bold are substituted for the default values listed in Table 2. Only the gas concentration value for G is varied in the study for each kerogen organofacies type.

 

Notes:

1Kerogen_oil_properties (kerogen->oil) and Kerogen_gas_properties (kerogen->gas) are not explicitly defined in Kerogen_kinetics, however, depending on the organofacies type defined in Kerogen_facies_type, the default ParaGeo parameters for the pre-multiplier A0, activation energy Emean and variance σ  as described in Hydrocarbon maturation are applied to the model by default.

 

Data File

 

 

* Kerogen_kinetics               NUM=1

! ---------------------------------

 Name    "kerogen1"

Kerogen_facies_type       "A"

 TOC                           8.0

Transformation_index        0.033

Hydrocarbon_index           0.617

Gas_concentration            0.17

Weight_fraction_carbon       0.80

 Universal_gas_constant    0.00831446261815324

 Kerogen_density            1200.0

 

1Kerogen property name is "kerogen1".

2Kerogen_facies_type specifies one of the five pre-defined types of kerogen organofacies (i.e. A, B, C, D/E, F).

3TOC defines the total organic carbon by weight as 8.0 percent, i.e. 8% of the rock matrix mass is kerogen.

4Transformation_index (TI) is defined as 0.033 whereby TI = S1/TOC.

5Hydrocarbon_index (HI) is defined as 0.617 whereby HI =S2/TOC.

6 Gas_concentration (G) defines the initial gas concentration ratio. Valid range is 0.0 <= G <= 1.0.

7Weight_fraction_carbon (W) defines the weight fraction of carbon in hydrocarbons as 0.8.

8The universal gas constant (R) is defined as 0.00831446261815324 kJ/K/mol.

9Kerogen density is defined as 1200 kg/m3.

 

 

 

 

 

Group Data

 

Group data

Group_data defines the group name, element type number, material number, kerogen property name, porous flow type and the associated surface entity.

 

Data File

 

 

* Group_data               NUM=1  

! -------------------------------

 Group_name      "Default-1"

 Element_type_number     7

 Material_number           1

 Kerogen_assignment     "kerogen1"

 Surfaces   IDM=1

   1

 Porous_flow_type      2

 

1Group name and material number are defined.

2Porous_flow_type 2 corresponding to drained analysis with non-zero pore pressures is defined.

3Element_type_number 7 corresponds to QPM4 for a 4-node 2D plane strain element .

4Kerogen_assignment defines the name of the kerogen property set "kerogen1" assigned to the group.

 

 

Group control data

Group_control_data activates the thermal field for the current simulation group.

 

Data File

 

 

* Group_control_data

! -------------------------------

 Group_numbers  IDM=1

       1

 Active_thermal_groups  IDM=1

       1

 

1Group_control_data activates the thermal field for the current simulation group.

 

 

 

Material and Fluids Property Data

 

Material data

Material_data defines the thermal field material properties of the model.

 

Data File

 

 

* Material_data               NUM=1

! ---------------------------------

 Material_name            "Sand"      

 Grain_density             2500

 Grain_conductivity_type      1

 Grain_conductivity           1

 Grain_specific_heat       1E-3

 Porosity                  0.20

 Singlephase_fluid            1

 

1Material name is defined as "Sand".

2Grain density = 2500 kg/m3 is defined.

3Grain conductivity type is defined as isotropic.

4Isotropic grain conductivity is defined as 1 and grain specific heat is defined as 1E-3. These data are required to be defined but are inconsequential in this example as the temperature is fully prescribed.

5Porosity is defined as 0.2.

6Fluid_properties number 1 is assigned to the material.

 

 

Fluids property data

Fluid_properties defines the fluid properties of the model.

 

Data File

 

 

* Fluid_properties

! ------------------------------------------

 Name                              "Water"

 Fluid_type                        "Water"

 Equation_state_type                     0

 Stiffness                          2000.0

 Density                            1000.0

 Viscosity_type                          1

 Viscosity                        2.80E-23

 Conductivity                            1

 Specific_heat                        1E-3

 

1Fluid properties for "Water" are defined.

2Water stiffness is set to 2000 MPa.

3Water density of 1000 kg/m3 is defined.

4The gas equation of state type is set to 0, i.e. nearly incompressible liquid.

5Fluid viscosity type is set to 1, i.e. constant viscosity with a value of 2.80E-23 MPa.Ma (c.a. 0.88cP).

6Isotropic fluid conductivity is defined as 1 and fluid specific heat is defined as 1E-3. These data are required to be defined but are inconsequential in this example as the temperature is fully prescribed.

 

 

 

 

Loading and Support Data

 

Loading data

Global_loads defines the prescribed temperature on the surface entity with loading rate defined via the Time_curve_data data structure.

Load_case_control_data defines the surface load as active.

 

Data File

 

 

* Global_loads                   NUM=1

! ---------------------------------------

 Prescribed_temperature   IDM=1 JDM=2

   1

   0

 Pres_temperature_surfaces   IDM=1 JDM=2

   1  

   1

 

 

* Time_curve_data               NUM=1

! ---------------------------------------

 Time_curve    IDM=2

      0        90

 Load_factor   IDM=2

     70       250

 

 

* Load_case_control_data         NUM=0

! ---------------------------------------

 Loadcases    IDM=1

   1

 Active_load_flags    IDM=1

   2

 

1A prescribed temperature of unit load is defined for the surface entity.

2This load is linearly ramped up from a load factor of 70 to 250 over a time duration of 90 Ma.

3The load is defined as being active in Load_case_control_data (flag 2).

 

 

 

Support data

Support_data constrains the temperature on the surface entity.

 

Data File

 

 

* Support_data               NUM=1

! ---------------------------------------

 Temperature_codes    IDM=1  JDM=1

   1

 Temperature_code_surfaces   IDM=1 JDM=2

   1

   1

 

1Temperature constraint is defined for the surface entity.

 

 

 

Mesh Data

 

Mesh_control_data and Structured_mesh_data are used to generate a single structured element mesh for the surface entity.

 

Data File

 

 

* Mesh_control_data

! ---------------------------------

 Generation_algorithm         1

 Mesh_generation_flag         0

 

 

* Structured_mesh_data

! ---------------------------------

 Default_divisions            1

 Surfaces                 IDM=1

    1

 

1Generation algorithm is set to 1, i.e. structured mesh.

2Mesh generation flag is set to 0 so that analysis will be performed after mesh generation.

3Default number of divisions is set to 1 for the surface entity number 1, i.e. a single element model.

 

 

 

History_point

 

History_point outputs element porosity, temperature and pore pressure and state variables for the hydrocarbon kinetics every time unit.

 

Data File

 

 

* History_point             NUM=1

! ---------------------------------

 Name       "Set1"

 Group       1

 Output_frequency_time      1

 Point_coordinates   IDM=2 JDM=1

   0.1 0.5

 Element_data   IDM=3

   "Porosity" "Elt_temp"  "Elt_pore"

 Hc_kinetics_state_variables IDM=14

  K_CKO  K_CKG   K_CO   K_CG    K_CGO   K_COE   K_CGE   K_CKI   K_PI   K_HI

  K_TR   K_VR   K_KTR   K_COTOT

 

1A history point named "Set 1" is defined just inside point 1 at X=0.1m, Y=0.5m to output data every 1.0 Ma.

2These history data include element porosity, temperature and pore pressure.

3Also output are state variables for the hydrocarbon kinetics:

a.K_CKO - Kinetic concentration of kerogen converted to oil

b.K_CKG -  Kinetic concentration of kerogen converted to gas

c.K_CO -  Kinetic concentration of oil

d.K_CG -  Kinetic concentration of gas

e.K_CGO -  Kinetic concentration of oil converted to gas

f.K_COE -  Kinetic concentration of oil expelled

g.K_CGE -  Kinetic concentration of gas expelled

h.K_CKI -  Kinetic concentration of inert kerogen

i.K_PI - Kinetic production index

j.K_HI - Kinetic hydrocarbon index

k.K_TR - Kinetic transformation ratio

l.K_VR - Kinetic vitrinite reflectance

m.K_KTR - Kinetic kerogen transformation ratio

n.K_COTOT - Kinetic total oil (CO + generated)

 

 

 

Thermal_control_data

 

Thermal_control_data defines the solution algorithm (3 - linear transient) for solving the thermal field, termination time = 90, etc.

 

Data File

 

 

* Thermal_control_data

! ---------------------------------

 Control_title     "stage"

 Solution_algorithm              3

 Initial_time_step             0.5

 Maximum_time_step_growth      100

 Minimum_time_step             0.1

 Maximum_time_step             0.5

 Maximum_number_time_steps 1000000

 Termination_time               90

 Output_frequency_plotfile      -1

 Output_frequency_restart        0

 Screen_message_frequency       10

 Output_time_plotfile           10

 Output_time_restart             0

 Screen_message_time             0

    1

 

1Solution algorithm is set to 3, i.e. linear transient.

2Time step size is set to 0.5 Ma.

3A plot file is output every 10 Ma.

4Termination time is set to 90 Ma.

 

 

 

 

 

Results

 

The results files for the kerogen -> oil/gas generation for different gas concentration ratios are in ParaGeo Examples\Validation\Val_005\Val_005a. These are placed in different sub-folders for the different kerogen organofacies types.  In this directory the spreadsheet mat_genonly_kerogenX.xlsx (where X is the identifier for the organofacies type) contains the history results output from the simulations and comparison plots against the results presented by Pepper and Corvi (1995a) for various gas concentration ratios.

 

Figure 2 below shows a comparison of the ParaGeo results against the results presented by Pepper and Corvi (1995a) - [Figure 15] for organofacies types A - F at seven different gas concentrations G = 0, 0.2, 0.4, 0.6, 0.8, 1.0 and the default G for each organofacies type.  These show excellent correlation in results for all organofacies types A - F for the default kerogen -> oil and kerogen -> gas kinetic parameters.

 

 

Organofacies

(a) ParaGeo vs Pepper and Corvi (1995a) - [Figure 15]         (b) ParaGeo

A

Val_005a_003

B

Val_005a_004

C

Val_005a_005

D/E

Val_005a_006

F

Val_005a_002

Figure 2: ParaGeo vs Pepper and Corvi (1995) - Figure 15: Kerogen transformation profiles for organofacies types A - F at various gas concentration ratios G = 0, 0.2, 0.4, 0.6, 0.8, 1.0 and default G (bold red) for each organofacies type.

 

 

 

References

 

[1] Pepper, A.S. and Corvi, P.J. (1995(a)): Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen. Marine and Petroleum Geology. 12(3) 291–319. 1995(a).

[2] Pepper, A.S., Dodd, T.A. (1995): Simple kinetic models of petroleum formation. Part II: Oil-gas cracking. Marine and Petroleum Geology. 12(3) 321-340.

[3] Pepper, A.S. and Corvi, P.J. (1995(b)): Simple kinetic models of petroleum formation. Part III: Modelling an open system. Marine and Petroleum Geology. 12(4) 417-452.